Τράπεζα Θεμάτων
www.trapeza-thematon.gr
Τύπος Σχολείου: | Γενικό Λύκειο | Τάξη: | Α' Λυκείου |
---|---|---|---|
Μάθημα: | Φυσική | Θέμα: | 2 |
Κωδικός Θέματος: | 8000 | Ύλη: | Χωρίς Αντιστοίχιση Ύλης |
Τύπος Σχολείου: | Γενικό Λύκειο |
---|---|
Τάξη: | Α' Λυκείου |
Μάθημα: | Φυσική |
Θέμα: | 2 |
Κωδικός Θέματος: | 8000 |
Ύλη: | Χωρίς Αντιστοίχιση Ύλης |
Τελευταία Ενημέρωση: 29-Απρ-2024 |
ΘΕΜΑ Β
Β1) Σε ένα κιβώτιο που αρχικά ήταν ακίνητο πάνω σε λείο οριζόντιο επίπεδο, ασκείται οριζόντια δύναμη \(\vec{F}\). Το κιβώτιο κινείται πάνω στο οριζόντιο επίπεδο με ταχύτητα που αυξάνεται ανάλογα με το χρόνο.
Α) Να επιλέξετε την σωστή απάντηση.
Η γραφική παράσταση της τιμής της δύναμης \((F)\) που ασκείται στο κιβώτιο σε συνάρτηση με το χρόνο \((t)\) παριστάνεται σωστά από το διάγραμμα:
Μονάδες 4
Β) Να δικαιολογήσετε την επιλογή σας.
Μονάδες 8
B2) Μικρό σφαιρίδιο μάζας \(m\) αφήνεται τη χρονική στιγμή \(t = 0 s\) από μικρό ύψος \(h\) να εκτελέσει ελεύθερη πτώση. Έστω \(t_{ολικο}\) το χρονικό διάστημα που απαιτείται για να φτάσει το σφαιρίδιο στο έδαφος και \(t_Ε\) το χρονικό διάστημα που απαιτείται ώστε η δυναμική του ενέργεια να γίνει ίση με την κινητική του.
Ως επίπεδο αναφοράς για τη δυναμική ενέργεια θεωρείται το οριζόντιο έδαφος και η επίδραση του αέρα αμελητέα.
Α) Να επιλέξετε την σωστή απάντηση.
Ο λόγος ισούται με:
α) \(\sqrt 2\)
β) \(\dfrac{3}{2}\)
γ) \(2\)
Μονάδες 4
Β) Να δικαιολογήσετε την επιλογή σας.
Μονάδες 9
Απάντηση Θέματος:
Β1. Σωστή απάντηση είναι η (β)
Ενδεικτική Αιτιολόγηση
Εφόσον η ταχύτητα αυξάνεται ανάλογα με το χρόνο, το κιβώτιο θα επιταχύνεται με σταθερή επιτάχυνση.
Από τον 2ο Νόμο του Νεύτωνα, αφού η τιμή της επιτάχυνσης είναι σταθερή, θα είναι και η τιμή της δύναμης σταθερή. Άρα το διάγραμμα της τιμής της δύναμης σε συνάρτηση με το χρόνο θα είναι μία ευθεία παράλληλη στον άξονα του χρόνου.
Β2. Σωστή απάντηση είναι η (α).
Ενδεικτική Αιτιολόγηση
Σύμφωνα με τις εξισώσεις της ελεύθερης πτώσης:
$$h =\dfrac{1}{2} \cdot g \cdot t^2_{ολικό}$$
από όπου προκύπτει ότι:
$$t_{ολικο} =\sqrt{\dfrac{2h}{g}}$$
Στο ύψος \(h\) το σφαιρίδιο έχει δυναμική ενέργεια :
\(U = m\cdot g \cdot h\) κινητική ενέργεια \(Κ = 0\) και μηχανική ενέργεια:
$$Ε = U + Κ = m \cdot g \cdot h$$
Έστω ότι σε ύψος \(h'\) από το έδαφος η δυναμική ενέργεια του σφαιριδίου έχει γίνει ίση με την κινητική του.
H δυναμική του ενέργεια θα είναι : \(U'= m\cdot g \cdot h'\),
η κινητική του ενέργεια : \(Κ' = U'\)
και η μηχανική ενέργεια: \(Ε'= Κ' + U'= 2U'= 2m \cdot g \cdot h'\).
Από την αρχή διατήρησης της μηχανικής ενέργειας προκύπτει :
$$Ε'= Ε$$ $$2m\cdot g \cdot h'= m\cdot g \cdot h$$
και τελικά
$$h'=\dfrac{h}{2}$$
Το σφαιρίδιο κατά την πτώση του από το ύψος \(h\) σε ύψος \(h'\), διανύει απόσταση \(s=h-h'=\dfrac{h}{2}\)
Όπως παραπάνω βρίσκουμε ότι:
$$t_E =\sqrt{\dfrac{2s}{g}} =\sqrt{\dfrac{h}{g}}$$
Οπότε:
$$\dfrac{t_{ολικό}}{t_E}= \sqrt{2}$$
Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida).