Για να εκτυπώσετε το Θέμα πατήστε "Εκτύπωση"!
| Τύπος Σχολείου: | Γενικό Λύκειο | Πηγή: Ι.Ε.Π. | Αναγνώσθηκε: 12821 φορές Επικοινωνία | |
|---|---|---|---|---|
| Μάθημα: | Άλγεβρα | Τάξη: | Α' Λυκείου | |
| Κωδικός Θέματος: | 15051 | Θέμα: | 2 | |
| Τελευταία Ενημέρωση: | 07-Μαρ-2024 | Ύλη: | 2.1. Οι Πράξεις και οι Ιδιότητές τους 2.4. Ρίζες Πραγματικών Αριθμών | |
| Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida) | ||||
| Τύπος Σχολείου: | Γενικό Λύκειο | ||
|---|---|---|---|
| Τάξη: | Α' Λυκείου | ||
| Μάθημα: | Άλγεβρα | ||
| Θέμα: | 2 | ||
| Κωδικός Θέματος: | 15051 | ||
| Ύλη: | 2.1. Οι Πράξεις και οι Ιδιότητές τους 2.4. Ρίζες Πραγματικών Αριθμών | ||
| Τελευταία Ενημέρωση: 07-Μαρ-2024 | |||
| Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida) | |||
ΘΕΜΑ 2
α) Να αποδείξετε ότι \((2-\sqrt{5})^{2}=9-4\sqrt{5}\) και να υπολογίσετε το ανάπτυγμα \((2+\sqrt{5})^{2}\).
(Μονάδες 12)
β) Να βρείτε τις τετραγωνικές ρίζες των αριθμών \(9-4\sqrt{5}\) και \(9+4\sqrt{5}\).
(Μονάδες 13)
ΛΥΣΗ
α) Είναι:
$$(2-\sqrt{5})^{2}=4-4\sqrt{5}+\sqrt{5}^{2}$$ $$=4-4\sqrt{5}+5$$ $$=9-4\sqrt{5}$$
Ομοίως έχουμε:
$$(2+\sqrt{5})^{2}=4+4\sqrt{5}+\sqrt{5}^{2}$$ $$=4+4\sqrt{5}+5$$ $$=9+4\sqrt{5}$$
β) Από το ερώτημα (α) έχουμε:
$$\sqrt{9-4\sqrt{5}}=\sqrt{(2-\sqrt{5})^{2}}$$ $$=|2-\sqrt{5}|$$ $$=\sqrt{5}-2$$
αφού ο αριθμός \(2-\sqrt{5}\) είναι αρνητικός οπότε:
$$|2-\sqrt{5}|=\sqrt{5}-2$$
Επίσης:
$$\sqrt{9+4\sqrt{5}}=\sqrt{(2+\sqrt{5})^{2}}$$ $$=|2+\sqrt{5}|$$ $$=2+\sqrt{5}$$
αφού ο αριθμός \(2+\sqrt{5}\) είναι θετικός, οπότε:
$$|2+\sqrt{5}|=2+\sqrt{5}$$