Για να εκτυπώσετε το Θέμα πατήστε "Εκτύπωση"!
Τύπος Σχολείου: | Γενικό Λύκειο | Πηγή: Ι.Ε.Π. | Αναγνώσθηκε: 19169 φορές Επικοινωνία | |
---|---|---|---|---|
Μάθημα: | Άλγεβρα | Τάξη: | Β' Λυκείου | |
Κωδικός Θέματος: | 31570 | Θέμα: | 2 | |
Τελευταία Ενημέρωση: | 16-Φεβ-2023 | Ύλη: | 1.1 Γραμμικά Συστήματα | |
Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida) |
Τύπος Σχολείου: | Γενικό Λύκειο | ||
---|---|---|---|
Τάξη: | Β' Λυκείου | ||
Μάθημα: | Άλγεβρα | ||
Θέμα: | 2 | ||
Κωδικός Θέματος: | 31570 | ||
Ύλη: | 1.1 Γραμμικά Συστήματα | ||
Τελευταία Ενημέρωση: 16-Φεβ-2023 | |||
Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida) |
ΘΕΜΑ 2
Δίνονται οι ευθείες: \(ε_{1}:\ 2x+y=6\) και \(ε_{2}:\ x-2y=-2\).
α) Να προσδιορίσετε αλγεβρικά το κοινό τους σημείο \(M\).
(Μονάδες 13)
β) Να δείξετε ότι η ευθεία \(ε_{3}:\ 3x+y=8\) διέρχεται από το \(M\).
(Μονάδες 12)
ΛΥΣΗ
α) Για να προσδιορίσουμε αλγεβρικά το κοινό σημείο \(Μ\) των ευθειών \(ε_{1}:\ 2x+y=6\) και \(ε_{2}:\ x-2y=-2\), θα λύσουμε το σύστημα (επιλέγουμε τη μέθοδο των αντίθετων συντελεστών):
$$\begin{cases} 2x+y=6 \\ x-2y=-2 \end{cases} $$ $$\overset{(\cdot 2)}{\Leftrightarrow} \begin{cases} 4x+2y=12 \\ x-2y=-2 \end{cases}$$ $$\overset{(+)}{\Leftrightarrow} \begin{cases} 5x=10 \\ x-2y=-2 \end{cases}$$ $$\Leftrightarrow \begin{cases} x=2 \\ 2-2y=-2 \end{cases}$$ $$\Leftrightarrow \begin{cases} x=2 \\ -2y=-4 \end{cases}$$ $$\Leftrightarrow \begin{cases} x=2 \\ y=2 \end{cases}$$
Άρα το ζητούμενο σημείο είναι το \(Μ(2,2)\).
β) Παρατηρούμε ότι οι συντεταγμένες του σημείου \(Μ\) επαληθεύουν την εξίσωση της ευθείας \(ε_{3}:\ 3x+y=8\), αφού \(3 \cdot 2+2=8\). Άρα η ευθεία \((ε_{3})\) διέρχεται από το \(Μ(2,2)\).