Για να εκτυπώσετε το Θέμα πατήστε "Εκτύπωση"!

Τύπος Σχολείου: Γενικό Λύκειο Πηγή: Ι.Ε.Π. Αναγνώσθηκε: 5379 φορές Επικοινωνία
Μάθημα: Άλγεβρα Τάξη: Α' Λυκείου
Κωδικός Θέματος: 34185 Θέμα: 4
Τελευταία Ενημέρωση: 02-Νοε-2023 Ύλη: 2.3. Απόλυτη Τιμή Πραγματικού Αριθμού 4.2. Ανισώσεις 2ου Βαθμού
Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida)
Τύπος Σχολείου: Γενικό Λύκειο
Τάξη: Α' Λυκείου
Μάθημα: Άλγεβρα
Θέμα: 4
Κωδικός Θέματος: 34185
Ύλη: 2.3. Απόλυτη Τιμή Πραγματικού Αριθμού 4.2. Ανισώσεις 2ου Βαθμού
Τελευταία Ενημέρωση: 02-Νοε-2023
Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida)
ΘΕΜΑ 4

α) Να λύσετε την ανίσωση \(x^{2}-5x-6<0\).
(Μονάδες 9)

β) Να βρείτε το πρόσημο του αριθμού \(Κ=\left(-\dfrac{46}{47}\right)^{2}+5\cdot \dfrac{46}{47}-6\) αιτιολογώντας την απάντησή σας.
(Μονάδες 7)

γ) Αν \(α\in (-6,6)\), να βρείτε το πρόσημο της παράστασης \(Λ=α^{2}-5|α|-6\) αιτιολογώντας την απάντησή σας.
(Μονάδες 9)

ΛΥΣΗ

α) Το τριώνυμο \(x^{2}-5x-6\) έχει διακρίνουσα \(Δ=(-5)^{2}-4\cdot 1\cdot (-6)=49>0\). Το άθροισμα των ριζών του είναι \(S=x_{1}+x_{2}=-\dfrac{-5}{1}=5\) και το γινόμενό τους είναι \(P=x_{1}x_{2}=\dfrac{-6}{1}=-6\), οπότε οι ρίζες είναι \(x_{1}=-1\) και \(x_{2}=6\).

O πίνακας προσήμου του τριωνύμου είναι:

Άρα η ανίσωση \(x^{2}-5x-6<0\) αληθεύει για \(x\in (-1,6)\).

β) Έχουμε \(-1<-\dfrac{46}{47}<6\).

Ο αριθμός \(Κ\) γράφεται:
\(Κ=\left(-\dfrac{46}{47}\right)^{2}+5\cdot \dfrac{46}{47}-6=\left(-\dfrac{46}{47}\right)^{2}-5\cdot \left(-\dfrac{46}{47}\right)-6\), οπότε είναι η τιμή του τριωνύμου \(x^{2}-5x-6\) για \(x=-\dfrac{46}{47}\).

Συνεπώς από τον πίνακα του ερωτήματος α) προκύπτει ότι ο αριθμός \(Κ\) είναι αρνητικός.

γ) Αν \(α\in (-6,6)\), έχουμε \(-6<α<6 \Leftrightarrow |α|<6 \Leftrightarrow 0\le |α|<6\).

Η παράσταση \(Λ=α^{2}-5|α|-6\) γράφεται \(Λ=|α|^{2}-5|α|-6\), που είναι η τιμή του τριωνύμου \(x^{2}-5x-6\) για \(x=|α|\).

Συνεπώς από τον πίνακα του ερωτήματος α) προκύπτει ότι \(Λ<0\).