Για να εκτυπώσετε το Θέμα πατήστε "Εκτύπωση"!

Τύπος Σχολείου: Γενικό Λύκειο Πηγή: Ι.Ε.Π. Αναγνώσθηκε: 6671 φορές Επικοινωνία
Μάθημα: Άλγεβρα Τάξη: Α' Λυκείου
Κωδικός Θέματος: 14811 Θέμα: 1
Τελευταία Ενημέρωση: 20-Σεπ-2023 Ύλη: 2.3. Απόλυτη Τιμή Πραγματικού Αριθμού
Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida)
Τύπος Σχολείου: Γενικό Λύκειο
Τάξη: Α' Λυκείου
Μάθημα: Άλγεβρα
Θέμα: 1
Κωδικός Θέματος: 14811
Ύλη: 2.3. Απόλυτη Τιμή Πραγματικού Αριθμού
Τελευταία Ενημέρωση: 20-Σεπ-2023
Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida)
ΘΕΜΑ 1

α) Να χαρακτηρίσετε καθεμιά από τις προτάσεις που ακολουθούν ως Σωστή (Σ) ή Λανθασμένη (Λ), γράφοντας στην κόλλα σας, δίπλα στο αριθμό που αντιστοιχεί σε καθεμιά από αυτές το γράμμα Σ αν η πρόταση είναι Σωστή, ή το γράμμα Λ αν αυτή είναι Λάθος.

  1. Το σημείο \(Μ(x,y)\) με \(x>0\) και \(y<0\) βρίσκεται στο δεύτερο τεταρτημόριο του καρτεσιανού συστήματος συντεταγμένων.
  2. Αν τρεις μη μηδενικοί αριθμοί \(α\), \(β\), \(γ\) είναι διαδοχικοί όροι γεωμετρικής προόδου, τότε ισχύει: \(β^{2}=α\cdot γ\).
  3. Ισχύει \(|α|\ge α\), για κάθε \(α\in \mathbb{R}\).
  4. Αν \(α>β\) και \(γ>δ\), τότε: \(α-γ>β-δ\) για οποιουσδήποτε πραγματικούς αριθμούς \(α\), \(β\), \(γ\), \(δ\).
  5. Η εξίσωση \(αx=α\) έχει μοναδική λύση \(x=1\) για κάθε \(α\in \mathbb{R}\).

(Μονάδες 10)

β) Για τους πραγματικούς αριθμούς \(α\), \(β\) να αποδείξετε ότι: \(|α\cdot β|=|α|\cdot |β|\).
(Μονάδες 15)

ΛΥΣΗ

α)

  1. Λ
  2. Σ
  3. Σ
  4. Λ
  5. Λ

β) Θεωρία σελ. 63