Για να εκτυπώσετε το Θέμα πατήστε "Εκτύπωση"!

Τύπος Σχολείου: Γενικό Λύκειο Πηγή: Ι.Ε.Π. Αναγνώσθηκε: 1086 φορές Επικοινωνία
Μάθημα: Άλγεβρα Τάξη: Α' Λυκείου
Κωδικός Θέματος: 35408 Θέμα: 2
Τελευταία Ενημέρωση: 18-Μαΐ-2023 Ύλη: 3.1. Εξισώσεις 1ου Βαθμού 5.2. Αριθμητική πρόοδος
Τύπος Σχολείου: Γενικό Λύκειο
Τάξη: Α' Λυκείου
Μάθημα: Άλγεβρα
Θέμα: 2
Κωδικός Θέματος: 35408
Ύλη: 3.1. Εξισώσεις 1ου Βαθμού 5.2. Αριθμητική πρόοδος
Τελευταία Ενημέρωση: 18-Μαΐ-2023
ΘΕΜΑ 2

Οι αριθμοί \(Α=1\), \(Β=x+4\), \(Γ=x+8\), είναι, με τη σειρά που δίνονται, διαδοχικοί όροι αριθμητικής προόδου \((α_{ν})\).

α) Να βρείτε την τιμή του \(x\).
(Μονάδες 10)

β) Αν \(x=1\) και ο αριθμός \(Α\) είναι ο πρώτος όρος της αριθμητικής προόδου \((α_{ν})\).
i. να υπολογίσετε τη διαφορά \(ω\).
(Μονάδες 7)

ii. να υπολογίσετε τον εικοστό όρο της αριθμητικής προόδου.
(Μονάδες 8)

ΛΥΣΗ

α) Οι αριθμοί \(Α\), \(Β\), \(Γ\) είναι διαδοχικοί όροι αριθμητικής προόδου αν και μόνο αν:

$$Β=\dfrac{Α+Γ}{2} $$ $$\Leftrightarrow x+4=\dfrac{1+x+8}{2} $$ $$\Leftrightarrow 2(x+4)=9+x $$ $$\Leftrightarrow 2x+8=x+9 $$ $$\Leftrightarrow x=1$$

β)
i. Για \(x=1\) είναι \(Α=1\), \(Β=5\) και \(Γ=9\). Τότε:

$$ω=Β-Α=5-1=4$$

ii. Είναι:

$$α_{20}=α_{1}+(20-1)ω $$ $$\Leftrightarrow α_{20}=1+19\cdot 4 $$ $$\Leftrightarrow α_{20}=1+76 $$ $$\Leftrightarrow α_{20}=77$$