Για να εκτυπώσετε το Θέμα πατήστε "Εκτύπωση"!
Τύπος Σχολείου: | Γενικό Λύκειο | Πηγή: Ι.Ε.Π. | Αναγνώσθηκε: 593 φορές Επικοινωνία | |
---|---|---|---|---|
Μάθημα: | Άλγεβρα | Τάξη: | Α' Λυκείου | |
Κωδικός Θέματος: | 36897 | Θέμα: | 2 | |
Τελευταία Ενημέρωση: | 18-Μαΐ-2023 | Ύλη: | 5.2. Αριθμητική πρόοδος |
Τύπος Σχολείου: | Γενικό Λύκειο |
---|---|
Τάξη: | Α' Λυκείου |
Μάθημα: | Άλγεβρα |
Θέμα: | 2 |
Κωδικός Θέματος: | 36897 |
Ύλη: | 5.2. Αριθμητική πρόοδος |
Τελευταία Ενημέρωση: 18-Μαΐ-2023 |
ΘΕΜΑ 2
α) Να βρείτε το άθροισμα των \(ν\) πρώτων διαδοχικών θετικών ακεραίων \(1\), \(2\), \(3\), ..., \(ν\).
(Μονάδες 12)
β) Να βρείτε πόσοι από τους πρώτους διαδοχικούς θετικούς ακέραιους έχουν άθροισμα \(45\).
(Μονάδες13)
ΛΥΣΗ
α) Η ακολουθία των \(ν\) πρώτων διαδοχικών θετικών ακεραίων \(1\), \(2\), \(3\), ..., \(ν\) είναι αριθμητική πρόοδος με \(α_{1}=1\), \(ω=1\) και \(α_{ν}=ν\). Άρα το άθροισμα των \(ν\) πρώτων όρων αυτής, είναι:
$$S_{ν}=\dfrac{ν}{2}\cdot (α_{1}+α_{ν})$$
δηλαδή:
$$S_{ν}=\dfrac{ν}{2}\cdot (1+ν)$$
β) Ψάχνουμε το πλήθος \(ν\) των όρων που έχουν άθροισμα \(45\), δηλαδή το \(ν\) ώστε \(S_{ν}=45\), δηλαδή \(\dfrac{ν}{2}\cdot (1+ν)=45\), οπότε \(ν\cdot (ν+1)=90\). Οι δυο διαδοχικοί φυσικοί αριθμοί που έχουν γινόμενο ίσο με \(90\) είναι οι αριθμοί \(9\) και \(10\) (δηλαδή \(ν=9\) και \(ν+1=10\)). Άρα το άθροισμα των \(9\) πρώτων φυσικών αριθμών είναι ίσο με \(45\).