Για να εκτυπώσετε το Θέμα πατήστε "Εκτύπωση"!

Τύπος Σχολείου: Γενικό Λύκειο Πηγή: Ι.Ε.Π. Αναγνώσθηκε: 12822 φορές Επικοινωνία
Μάθημα: Άλγεβρα Τάξη: Β' Λυκείου
Κωδικός Θέματος: 20692 Θέμα: 2
Τελευταία Ενημέρωση: 23-Οκτ-2022 Ύλη: 5.2 Λογάριθμοι 5.3 Λογαριθμική συνάρτηση
Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida)
Τύπος Σχολείου: Γενικό Λύκειο
Τάξη: Β' Λυκείου
Μάθημα: Άλγεβρα
Θέμα: 2
Κωδικός Θέματος: 20692
Ύλη: 5.2 Λογάριθμοι 5.3 Λογαριθμική συνάρτηση
Τελευταία Ενημέρωση: 23-Οκτ-2022
Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida)
ΘΕΜΑ 2

Δίνεται η συνάρτηση \(f(x)=\log x\), \(x>0\).
α) Να υπολογίσετε τους αριθμούς \(f(100)\), \(f(\sqrt{10})\)
(Μονάδες 12)

β) Για \(x>1\), να επιλύσετε την εξίσωση \(f(x+1)+f(x-1)=\log10-\log5\).
(Μονάδες 13)

α) \(f(100)=\log100=2\), διότι η βάση του λογαρίθμου είναι το 10, άρα από τον ορισμό έχουμε \(10^{2}=100\).
\(f(\sqrt{10})=\log(\sqrt{10})=\log(10^{\frac{1}{2}})=\dfrac{1}{2}\)

β) Η εξίσωση γράφεται:

$$\log(x+1)+\log(x-1)=\log10-\log5$$ $$\Leftrightarrow \log[(x+1)(x - 1)]=\log(\dfrac{10}{5})$$ $$\Leftrightarrow \log(x^{2}-1^{2})=\log2$$

Συνεπώς: \(x^{2}-1=2 \Leftrightarrow x^{2}=3\)

Αλλά \(x>1\), οπότε \(x=\sqrt{3}\). (H λύση \(x=-\sqrt{3}\) απορρίπτεται).