Για να εκτυπώσετε το Θέμα πατήστε "Εκτύπωση"!
Τύπος Σχολείου: | Γενικό Λύκειο | Πηγή: Ι.Ε.Π. | Αναγνώσθηκε: 2309 φορές Επικοινωνία | |
---|---|---|---|---|
Μάθημα: | Άλγεβρα | Τάξη: | Α' Λυκείου | |
Κωδικός Θέματος: | 14963 | Θέμα: | 4 | |
Τελευταία Ενημέρωση: | 10-Φεβ-2023 | Ύλη: | 2.3. Απόλυτη Τιμή Πραγματικού Αριθμού 4.1. Ανισώσεις 1ου Βαθμού 4.2. Ανισώσεις 2ου Βαθμού |
Τύπος Σχολείου: | Γενικό Λύκειο |
---|---|
Τάξη: | Α' Λυκείου |
Μάθημα: | Άλγεβρα |
Θέμα: | 4 |
Κωδικός Θέματος: | 14963 |
Ύλη: | 2.3. Απόλυτη Τιμή Πραγματικού Αριθμού 4.1. Ανισώσεις 1ου Βαθμού 4.2. Ανισώσεις 2ου Βαθμού |
Τελευταία Ενημέρωση: 10-Φεβ-2023 |
ΘΕΜΑ 4
Δίνεται η εξίσωση \(|x-4|-|x-2|=2\).
α) Να διατυπώσετε γεωμετρικά το ζητούμενο της παραπάνω εξίσωσης.
(Μονάδες 8)
β) Να αιτιολογήσετε γεωμετρικά ότι οι λύσεις της παραπάνω εξίσωσης είναι όλοι οι πραγματικοί αριθμοί που ανήκουν στο \((-∞,2]\) και μόνο αυτοί.
(Μονάδες 8)
γ) Αν για τον πραγματικό αριθμό \(x\) ισχύει ότι \(|x-4|-|x-2|=2\), τότε να δείξετε ότι \(x^{2}-6x+8≥0\).
(Μονάδες 9)
ΛΥΣΗ
α) Αναζητούμε πραγματικούς αριθμούς \(x\) των οποίων η απόσταση από το \(4\) είναι δύο μονάδες μεγαλύτερη από την απόστασή τους από το \(2\). Δηλαδή:
$$d(x,4)-d(x,2)=2$$
β) Έστω ότι τα σημεία \(Μ\), \(Α\), \(Β\) αναπαριστούν στον άξονα των πραγματικών αριθμών, τους αριθμούς \(x\), \(2\), \(4\) αντίστοιχα, όπως φαίνεται στα παρακάτω σχήματα.
Παρατηρούμε ότι \(d(2,4)=(ΑΒ)=2\).
Για κάθε αριθμό \(x∈(-∞,2]\) είναι \(d(x,4)-d(x,2)=(ΜΒ)-(ΜΑ)=(ΑΒ)=2\).

Για κάθε αριθμό \(x∈(2,4]\) είναι:
$$d(x,4)-d(x,2) < d(x,4)+d(x,2)$$ $$=(ΜΒ)+(ΜΑ)=(ΑΒ)=2$$
και άρα:
$$d(x,4)-d(x,2)≠2$$

Για κάθε αριθμό \(x∈(4,+∞)\) είναι \((ΜΒ)<(ΜΑ)\) οπότε \(d(x,4)<d(x,2)\) δηλαδή \(d(x,4)-d(x,2)<0\) και άρα \(d(x,4)-d(x,2)≠2\).

γ) όπως δείξαμε στο β), αν για τον πραγματικό αριθμό ισχύει \(x\) ότι \(|x-4|-|x-2|=2\), τότε \(x∈(-∞,2]\).
Το τριώνυμο \(x^{2}-6x+8\) έχει ρίζες τους αριθμούς \(2\) και \(4\) και γίνεται μη αρνητικό για \(x∈(-∞,2]∪[4,+∞)\).
Συνεπώς αν για τον πραγματικό αριθμό \(x\) ισχύει ότι \(|x-4|-|x-2|=2\), τότε \(x∈(-∞,2]\) και \(x^{2}-6x+8≥0\).