Για να εκτυπώσετε το Θέμα πατήστε "Εκτύπωση"!
Έναρξη από 2 Σεπτεμβρίου
Τύπος Σχολείου: | Γενικό Λύκειο | Πηγή: Ι.Ε.Π. | Αναγνώσθηκε: 8711 φορές Επικοινωνία | |
---|---|---|---|---|
Μάθημα: | Άλγεβρα | Τάξη: | Β' Λυκείου | |
Κωδικός Θέματος: | 32675 | Θέμα: | 2 | |
Τελευταία Ενημέρωση: | 24-Φεβ-2023 | Ύλη: | 3.4 Οι τριγωνομετρικές συναρτήσεις 3.5 Βασικές τριγωνομετρικές εξισώσεις | |
Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida) |
Τύπος Σχολείου: | Γενικό Λύκειο | ||
---|---|---|---|
Τάξη: | Β' Λυκείου | ||
Μάθημα: | Άλγεβρα | ||
Θέμα: | 2 | ||
Κωδικός Θέματος: | 32675 | ||
Ύλη: | 3.4 Οι τριγωνομετρικές συναρτήσεις 3.5 Βασικές τριγωνομετρικές εξισώσεις | ||
Τελευταία Ενημέρωση: 24-Φεβ-2023 | |||
Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida) |
ΘΕΜΑ 2
Δίνεται η συνάρτηση \(f(x)=2ημx+1\), \(x∈\mathbb{R}\).
α) Να βρείτε τη μέγιστη και την ελάχιστη τιμή της συνάρτησης \(f\).
(Μονάδες 10)
β)Για ποια τιμή του \(x∈[0,2π]\) η συνάρτηση παρουσιάζει μέγιστη τιμή;
(Μονάδες 15)
ΛΥΣΗ
α) Γνωρίζουμε ότι μια συνάρτηση της μορφής \(g(x)=2ημx\) έχει ελάχιστη τιμή \(-2\) και μέγιστη \(2\). Άρα, η συνάρτηση \(f(x)=2ημx+1\) έχει ελάχιστη τιμή \(-2+1=-1\) και μέγιστη \(2+1=3\).
β) Η τιμή του \(x\) για την οποία η συνάρτηση \(f\) παρουσιάζει μέγιστη τιμή είναι ηλύση της εξίσωσης:
$$f(x)=3$$ $$\Leftrightarrow 2ημx+1=3$$ $$\Leftrightarrow 2ημx=2$$ $$\Leftrightarrow ημx=1$$ $$\Leftrightarrow ημx=ημ\dfrac{π}{2}$$ $$\Leftrightarrow x=\dfrac{π}{2}\ \text{ή}\ x=π-\dfrac{π}{2}=\dfrac{π}{2}$$
Άρα, η συνάρτηση \(f\) παρουσιάζει μέγιστη τιμή για \(x=\dfrac{π}{2}\).